ハイドロホン校正を目的とした高強度超音波音源の 2次元音場シミュレーションによる音場設計

Acoustic Field Design by 2D Acoustic Field Simulation for High-intensity Ultrasound Source System for Calibration of hydrophone

五十嵐 茂¹⁾²⁾、森下 武志¹⁾、竹内 真一¹⁾

¹⁾ 桐蔭横浜大学大学院工学研究科医用工学専攻 ²⁾ 職業能力開発総合大学校電子回路ユニット

(2016年3月28日 受理)

1. はじめに

近年、医療分野では、がんの治療を目的と した高密度焦点式超音波(HIFU)^[1, 2]や遺伝 子を細胞内に導入するためのソノポレーショ ン^[3,4]、音響化学療法による超音波治療^[5]、 組織や臓器の硬さを画像化する超音波エラス トグラフィー^[6]、高調波を利用するハーモニ ックイメージング診断法「「など、また、産 業分野では超音波洗浄機^[8,9]、超音波分散器 [10, 11] などの高強度超音波の使用が増えてい る。これら高強度な超音波音場では線形理論 が成り立たない非線形の領域となり、その非 線形音場の校正や評価の要求が増えると予想 される。そのため、強力な超音波音場の音圧 分布を受波できる堅牢なハイドロホンの開発 [12] とともに、強力な超音波を送波できる高 強度音源の開発を行う必要がある。

産業技術総合研究所計量標準総合センター では、2002年前後から超音波計量標準の整 備を開始し、超音波パワーの標準は、天秤法 による超音波パワーの計測で15 W まで、さ らにカロリメトリ法による計測で100 W ま でが整備されている^[13]。また、ハイドロホ ンの受波感度校正に対する超音波音圧標準は、 0.1 MHz ~ 40 MHz が整備されている^[14]。 これらハイドロホンの感度校正は、図1に示 すように、送波音源の遠距離音場にPET 薄 膜を置きレーザ干渉計によって超音波音圧の 絶対測定を行っている^[15]。高強度な超音波 音場を測定可能なハイドロホンを校正するに は、このPET 薄膜を振動させる高音圧でか つ平面波に近い超音波音場が必要となる^[16]。

IGARASHI Shigeru ^{1),2)}, MORISHITA Takeshi ¹⁾, TAKEUCHI Shinichi ¹⁾

¹⁾ Department of Biomedical Engineering, Graduate school of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama, Kanagawa, 225-8502 Japan

²⁾ Electronic Circuit Engineering Unit, Polytechnic University, 2-32-1 Ogawa-nishimachi, Kodaira-city, Tokyo, 187-0035 Japan

そこで高強度音源の開発の第1段階として、 振動子の高耐圧化や印加電圧の高電圧化だけ でなく、音響的に高強度化ができないかと考 え、音響導波路を用いた超音波音源システム を検討している。これまで、複数の音響導波 路と送波振動子を用いた超音波音源を提案 ^[17,18]していたが、さらにシンプルな構造と して、凹面型振動子からの集束超音波と音響 導波路を組み合わせた音源を提案する。

本稿では、2次元音場シミュレーションに よって、シンプルな音響導波路のモデルから 出力される音圧分布を調査し、平板振動子が 形成する音圧分布に類似するように音響導波 路の形状を決定していく設計手順を示し、最 終的に凹面型振動子を想定した集束超音波と 音響導波路によって構成される超音波音源シ ステムを提案し、この音源によって形成する 音場と平板振動子の音場とを比較することに よって高強度化の可能性について述べる。

2. 音響導波路の基本特性

2.1 本音源システムの動作原理

本研究で提案する音響導波路を用いた音源 システムの構成を図2に示す。これは凹面 型振動子からの集束超音波を、円錐状の音響 導波路で囲い円筒状の音響導波路に入力し、 その中を伝搬させて送波開口面から出力し超 音波音場を形成する。 すなわち、円筒状の 音響導波路に集束超音波を入力し、送波開口 面から高音圧な超音波を出力するものである。

2.2 2次元音場シミュレーションの概要

2次元シミュレーションは Cyberlogic 社 製の Wave2000 を使用した。これは FDTD (時間領域有限差分法) による 2次元シミュ レータであり、変位分布は正負の変位を絶対 値にして輝度表示される。シミュレーション の基本条件は、送波超音波は周波数1 MHz、 振幅 ± 1 [a.u.] の縦波連続波とし、音響媒質 は水(温度 25 °C、音速 1497 m/s、固有音響 インピーダンス 1.497 MRayl) とした。音響

図3 2次元音場シミュレーションの領域サイズ と音圧分布の算出ライン(破線)

導波路は厚さ 0.2 mm の空気層(温度 20 ℃、 音速 344.0 m/s、固有音響インピーダンス 0.427 kRavl) に設定し、任意の空間位置に おける音圧値を得るために、幅0.3 mmの受 波振動子を配置して音圧の時間波形を取得し、 それらの音圧波形からピーク - ピーク値を求 めて相対音圧値 [a.u.] とした。図3に2次元 シミュレーションの座標系を示す。x軸は距 離方向の座標を示し送波開口面を x = 0 mm とする。v軸は方位方向の座標を示し、v = 30 mm を中心軸とする。例えば、図中の破 線のように、中心軸音圧は、v = 30 mm 上 のx = 0~80 mm 間に受波振動子を配置し て得られるピーク - ピーク音圧値を、方位方 向音圧は、x = 40、60、80 mm の軸上の y = 0~30 mm間(中心から上半分の領域)に 受波振動子を配置して得られるピーク - ピー ク音圧値を求めて示すことにする。

2.3 送波振動子を入力とした音圧出力

まず、集束超音波の入力の代わりに、図4 に示すような幅1 mmの送波振動子を円筒 状の音響導波路の入口におき、その音響導波 路の形状に対する音圧出力を求めた。音響導 波路の長さをL=10、20、30 mm、内幅をd

図4 音響導波路(長さL、幅d)を用いた時の幅1mmの送波振動子による音場シミ ユレーションモデル

図5 音響導波路の形状(長さL、幅d) に対す る中心軸距離 60 mm における音圧レベル

図6 送波振動子の幅1mm、音響導波路の長さ20mmに対する音響導波路の幅dと中心軸距離60mmにおける方位方向の音圧分布の関係

= 1 ~ 15 mm とし、送波開口面からの中心 軸上の距離 x = 60 mm の地点の音圧は**図5** のようになった。今回、音響導波路の長さL= 20 mm に着目して、内幅 d = 5 ~ 9 mmとした時、距離 x = 60 mm 地点の方位方向 の音圧分布は**図6**のようになった。音響導 波路の長さL = 20 mm、内幅 d = 7 mmの 時に中心軸音圧が最も大きくなったので、以 降、音響導波路はこの形状で検討を続ける。

図7 音響導波路(長さ20 mm、幅7 mm)を 用いた時の送波振動子(幅 w)による音 場シミュレーションモデル

図8 音響導波路(長さ20 mm、幅7 mm)を用いた時の送波振動子の幅 w と中心軸距離 60 mm における方位方向の音圧分布の関係

図 9 音響導波路(長さ20 mm、幅7 mm)と
 送波振動子(幅 w)からの集束超音波(焦
 点距離 f = w、距離 x₀ = w)の音場シミ
 ュレーションモデル

2.4 送波振動子幅と音圧出力の関係

次に、長さL = 20 mm、内幅d = 7 mmの音響導波路に対して、**図7**のように送波 振動子幅 $w = 1 \sim 6 \text{ mm}$ とした時の音圧出 力を求めたところ**図8**のようになった。こ れによると振動子幅が広くなるにつれ中心軸 のピーク音圧はあがり、徐々に球面波状にビ ームが広がるが、内幅3 mm 前後の時には 平板振動子の方位方向音圧分布のようなメイ ンビームとサイドローブが現れることが示さ

図10 音響導波路 (長さ20 mm、幅7 mm) と 集束超音波 (焦点距離 *f* = *w*、距離 *x*₀ = *w*) による中心軸距離 40,60,80 mm における 送波振動子の幅 *w* と音圧レベルの関係

 図11 音響導波路(長さ20 mm、幅7 mm)と 集束超音波(焦点距離 f = w、距離 x₀ = w)による中心軸距離 60 mmにおける方 位方向の音圧分布

れた。

2.5 集束超音波を入力とした音圧出力

次に、音響導波路の入口から、内幅3 mm の送波振動子の代わりに**図9**のモデルに示 すような集束超音波を入力する。シミュレー ションでは、凹面型振動子の代わり焦点距離 の自動設定機能を利用し集束超音波を形成し た。ここで焦点距離fと音響導波路までの距 離 x_0 はすべて送波振動子幅wと等しく設定 した。**図10**に送波振動子幅 $ew = 2 \sim 38$ mm とした時の中心軸上x = 40、60、80 mm 地点の音圧変化を示し、**図11**に、中心 軸距離 60 mm における振動子幅w = 8、14、 20、26、32、38 mm の方位方向の音圧分布 を示す。どちらも振動子幅が大きくなるにつ れ、音圧値が増加するもののビームが乱れて 中心のピーク音圧が上がらない様子がみられ

図12 音響導波路と集束超音波を用いた音源シ ステムのシミュレーションモデル

 ⁽b) 音響導波路と集束超音波を用いた
 音源システム(送波開口幅7 mm)

る。これは集束超音波が音響導波路の外側に 漏れて送波開口からのビームに影響を与えて いるものと考えられる。

3. 音響導波路と集束超音波を用いた 超音波音源システム

3.1 2次元音場シミュレーションモデル

前項の手順により、超音波の漏れの影響を 防止するために円錐状の音響導波路で囲い、 最終的に図12のような音響導波路と集束超 音波を用いた超音波音源システムの2次元シ ミュレーションモデルとした。なお、凹面型 振動子の代わり焦点距離fの自動設定を利用

図13 音場シミュレーションによる変位分布 (絶対値)の比較

図14 本音源システムと平板振動子の中心軸音 圧分布の比較

図15 中心軸距離 60 mm における本音源シス テムと平板振動子の方位方向音圧分布の 比較

し集束超音波を形成した。

3.2 2次元音場シミュレーション結果

幅7 mmの平板振動子による2次元変位 分布を図13(a)に、振動子幅 w = 40 mm、 焦点距離 f = 40 mm、送波開口幅7 mm と した本音源システムの2次元変位分布を**同図** (b)に示す。これらによると後者の送波開口面 以降の変位分布が前者の変位分布に似

た分布が形成されている。そこで、両 者の中心軸上の音圧分布を求め、送波 面が一致するよう重ねて表示すると図 14となる。さらに、両者の送波開口 面から 60 mm の地点における方位方 向の音圧分布を重ねて表示すると図 15となる。これらの結果を整理して、 メインビームのピーク音圧、-6dB ビ ーム幅、サイドローブのピーク音圧お よびサイドローブとメインビームのピーク音 圧比をまとめると表1のようになる。メイ ンビームの音圧ピーク値は、単一振動子より ほぼ同じビーム幅で2.12倍となった。しかし、 メインビームに対するサイドローブのレベル 比は1.91倍となった。サイドローブの増加 については、ハイドロホン校正のための薄膜 はメインビームによって振動させるので、こ のサイドローブが薄膜に影響を与えないよう に考慮して対処する必要がある。

3.3 シミュレーションモデル構築の手順

これまでの2次元シミュレーションをまと めると以下のようになり、これは平板振動子 に類似した音場を設計するための一つの手順 になるものと考えられる。

- ② 送波振動子幅 w を変化させて、出力される方位方向の音圧分布によりビーム形状を調査する。今回は送波振動子幅が3 mm前後の時に平板振動子に類似した音場ビームが得られた。
- ③ 凹面型振動子の代わりに幅 w の送波振動子に、焦点距離fを自動設定した集束超音波を音響導波路に入力し、出力の方位方向の音圧分布によりピーク音圧の増加特性を調査する。今回は送波振動子の幅が大きくなるにつれピーク音圧は増加するが、集

メインビーム	メインビーム	サイドローブ	サイドローブと
ピーク音圧	-6 dB幅	ピーク音圧	メインビームの
P [a.u.]	BW [mm]	P' [a.u.]	ピーク音圧比 R
$P_{\rm W} = 29.74$	$BW_{\rm W} = 14.5$	$P'_{\rm W} = 12.53$	$R_{\rm W} = P'_{\rm W} / P_{\rm W}$
			= 0.42
$P_{\rm S} = 14.03$	$BW_{\rm S} = 15.0$	<i>P</i> ′ _s =3.10	$R_{\rm S} = P'_{\rm S} / P_{\rm S}$
			= 0.22
$P_{\rm W} / P_{\rm s} = 2.12$	$BW_{\rm W}/BW_{\rm S}$	—	D = (D = 1.01)
	= 0.97		$K_{\rm W} / K_{\rm S} = 1.91$

表1 中心軸距離 60 mm における方位方向の音圧分布の評価

Suffix W: 音響導波路を用いた音源, S: 平板振動子

束超音波が音響導波路の外側に漏れ送波開 口からのビームに影響を与えていることが 考えられる。

 ④ 最終的に、送波振動子幅 w = 40 mm、 焦点距離 f = 40mm とした集束超音波を、 円錐状の音響導波路で囲いながら円筒状の 音響導波路に入力し、送波開口面から出力 して超音波音場を形成する。

4. まとめ

音響導波路と凹面型振動子を想定した集束 超音波を用いた超音波音源システムを提案し、 2次元音場シミュレーションにより、幅7 mmの単一振動子と同等のビーム幅を形成し ピーク音圧は約2.1倍となった。

この結果により高強度化の可能性が示めさ れたと同時に、音響導波路用いた超音波音場 の設計手順も示された。

【参考文献】

- 安田惇,吉澤晋,梅村晋一郎,"Triggered HIFUを用いたローズベンガル水溶 液中のキャビテーション気泡の高速度撮 影", Jpn J Med Ultrasonics Vol.42, Suppl. S478, 2015
- [2] 佐々木博史,中村高太郎,吉澤晋,梅 村晋一郎,"強力集束超音波治療における 多点キャビテーション気泡を利用した加熱 凝固領域の増大", Jpn J Med Ultrasonics Vol.40, Suppl. S439, 2013
- [3] 入江豊、立花克郎、フェリルロリト、遠藤日富美、山口和記、原田慶美, "Sonoporation 法による皮膚への遺伝子導入", Jpn J Med Ultrasonics Vol.35, Suppl. S557, 2008
- [4] 小玉哲也、青井あつ子、渡邊夕紀子、堀 江佐知子、冨田典子、小野栄夫、森士朗、
 "ソノポレーションによる遺伝子導入効率: 気泡特性に対する検討", Jpn J Med Ultrasonics Vol.34, Suppl. S295, 2007

- [5] 弓田長彦,西垣隆一郎,梅村甲子郎,梅 村晋一郎,"音響化学療法の研究―超音波 による薬物の抗腫瘍活性化―", Jpn J Med Ultrasonics, Vol.18, No.6, pp.537-545, 1991
- [6] 三竹毅、"エラストグラフィーなど超音 波先端技術の最新状況", Jpn J Med Ultrasonics Vol.33, Suppl. S171, 2006
- [7] 網野和宏,小菅正之,大西隆之,田中一 史,宮本和夫,曹景文,"コンパウンド・ インパルス送信波形を用いた Broadband Harmonics について", Jpn J Med Ultrasonics Vol.37, Suppl. S334, 2010
- [8] 超音波洗浄機, http://www.kaijo.co.jp/ sansen/index.html, 株式会社カイジョー
- [9] 超音波洗浄機, http://www.honda-el.co. jp/industry/list020_7.html, 本多電子株式 会社
- [10] 超音波分散機, http://www.sonic-tech.
 co.jp/CL04/2-index.html, 株式会社ソニックテクノロジー
- [11] 超音波分散機, http://www.smt-gr.co.
 jp/dispersion/forte.html, 株式会社エスエムテー
- [12] 椎葉倫久,植村友樹,岡田長也,内田 武吉,菊池恒男,黒澤実,竹内真一,"チ タン製前面板を有する堅牢型ハイドロホン の特性改善に関する検討",信学技法 112(387), pp.87-92, 2013.
- [13] 超音波パワー標準, https://unit.aist. go.jp/rima/acs-ultsn/calibration/calibration_ultrasound.html#01, 産業技術総合研 究所計量標準総合センター
- [14] 超音波音圧標準, https://unit.aist.go. jp/rima/acs-ultsn/calibration/calibration_ ultrasound.html#02, 産業技術総合研究所 計量標準総合センター
- [15] 菊池恒男, "我国における超音波計量標準の整備状況と今後の課題", Jpn J Med Ultrasonics, Vol.36, No.6, 2009
- [16] IEC 62127-2, "Ultrasonics Hydrophones — Part 2: Calibration for ultrason-

ic fields up to 40 MHz", 2007

- [17] 五十嵐茂,竹内真一,"複数の音響導波
 路を用いて形成する超音波音場",日本音
 響 学 会 講 演 論 文 集, pp.1383–1384, Sep., 2014
- [18] S. Igarashi and S. Takeuchi, "Control of Ultrasonic Acoustic Fields by Multiple Acoustic Waveguides and Piezoelectric Transducers", SENSORDEVICES, IARIA, pp.26–31, Nov. 2014